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ABSTRACT

Monthlong hindcasts of theMadden–Julian oscillation (MJO) from the atmospheric Flow-following Icosahedral

Model coupled with an icosahedral-grid version of the Hybrid Coordinate Ocean Model (FIM-iHYCOM), and

from the coupledClimateForecast System, version 2 (CFSv2), are evaluated over the 12-yr period 1999–2010. Two

sets of FIM-iHYCOM hindcasts are run to test the impact of using Grell–Freitas (FIM-CGF) versus simplified

Arakawa–Schubert (FIM-SAS) deep convection parameterizations. Each hindcast set consists of four time-lagged

ensemble members initialized weekly every 6 h from 1200 UTC Tuesday to 0600 UTC Wednesday.

The ensemble means of FIM-CGF, FIM-SAS, and CFSv2 produce skillful forecasts of a variant of the Real-

time Multivariate MJO (RMM) index out to 19, 17, and 17 days, respectively; this is consistent with FIM-CGF

having the lowest root-mean-square errors (RMSEs) for zonal winds at both 850 and 200 hPa. FIM-CGF and

CFSv2 exhibit similar RMSEs in RMM, and theirmultimodel ensemble mean extends skillful RMMprediction

out to 21 days. Conversely, adding FIM-SAS—with much higher RMSEs—to CFSv2 (as a multimodel en-

semble) or FIM-CGF (as amultiphysics ensemble) yields either little benefit, or even a degradation, compared

to the better single-model ensemblemean. This suggests thatmultiphysics/multimodel ensemblemean forecasts

may only add value when the individual models possess similar skill and error. An atmosphere-only version of

FIM-CGF loses skill after 11 days, highlighting the importance of ocean coupling. Further examination reveals

some sensitivity in skill and error metrics to the choice of MJO index.

1. Introduction

The Madden–Julian oscillation [MJO; Madden and

Julian (1971, 1972)] involves the coupling of a large-

scale atmospheric baroclinic circulation to multiscale

convective clusters and is the primary driver of in-

traseasonal (30–90 day) variability in the tropics

(Zhang 2005). The MJO impacts not just the tropics,

but also the entire Earth system (Zhang 2013). Because

it acts on relatively long time scales and has influences

on global weather, a reasonable representation of the

MJO in earth system models is central to intraseasonal

prediction. Specifically, a better physical understand-

ing of the MJO—along with improved simulation

in numerical models—should help bridge the gap

between weather forecasts [which have a predictabil-

ity limit of ;2 weeks in the midlatitudes (Lorenz

1969)] and climate forecasts (interseasonal and longer

time scales).

Forecasting the MJO has been a major challenge in

weather and climate models alike. Because the MJO is
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most commonly described as an eastward-propagating

convective anomaly across the equatorial Indian Ocean

through the Maritime Continent and into the western

Pacific Ocean, it is not surprising that MJO simulations

are highly sensitive to the representation of atmospheric

convection (e.g., Liu et al. 2005; Zhou et al. 2012;

Holloway et al. 2013; Boyle et al. 2015).

Another challenge is defining and identifying the

MJO for forecasting and verification purposes. This is

not straightforward because of the abovementioned

circulation–convection coupling. All of the characteris-

tics of this coupling (propagation speed, intensities of

the wind and convective anomalies, and geographic

location/extent) are influenced by interannual variability

(including El Niño) and the seasonal cycle, and may

even vary considerably between successive MJO events.

Consequently, multiple algorithms have been proposed

to quantify the strength and location of the MJO signal

from both observations and numerical models.

The most widely used MJO identification algorithm is

the Real-time Multivariate MJO (RMM) index origi-

nally proposed by Wheeler and Hendon (2004). Briefly,

they used empirical orthogonal function (EOF) analysis

to develop the RMM index (which is actually two or-

thogonal principal components: RMM1 and RMM2)

based on three input fields: anomalous zonal winds at

850 and 200 hPa (U850 and U200, respectively) as well

as anomalous outgoing longwave radiation (OLR).

Anomalies are calculated by removing (i) the annual

mean, (ii) the first three harmonics of the seasonal cycle,

(iii) the preceding 120 days of anomaly fields, and

(iv) the El Niño signal. These anomalies are then aver-

aged at each longitude between 158S and 158N, divided by

normalization factors, projected onto the observed EOFs,

and then normalized again. There are many variants of

the RMM, most of which omit step (iv) following Lin

et al. (2008). Revisions to the RMM continue to be

proposed (Liu et al. 2016); as described in section 2,

this study also uses a slightly different method to

calculate RMM.

There have been other MJO indices proposed that do

not use the same three inputs as the RMM-based in-

dices. Ventrice et al. (2013) followed the methodology

of Lin et al. (2008) [i.e., likeWheeler andHendon (2004)

except retaining the El Niño signal] but replaced OLR

with the 200-hPa velocity potential (VP200), naming

their index the velocity potential MJO (VPM). While

VP200 can serve as a proxy for deep convection (via

large-scale upper-tropospheric divergence) like OLR,

the latter field has some limitations not shared by the

former (Ventrice et al. 2013). In addition to a modified

RMM index, this study also uses a similarly modified

version of the VPM (section 2) in order to examine the

sensitivity of MJO verification (via skill and error) to

MJO index.

Another class of MJO indices aims to identify/

quantify the MJO solely through its convective signal

(typically, OLR). A major benefit of such OLR-only

indices is their ability to much better capture the me-

ridional propagation common during boreal summer

(e.g., Kikuchi et al. 2012). Conversely, a drawback of

these indices—including the all-season OLR-based MJO

index and the filtered MJO OLR index, both of which

were developed by Kiladis et al. (2014)—is that OLR is

much noisier in time and space (and difficult for nu-

merical models to properly represent) than wind fields.

This manuscript focuses on RMM and VPM, both of

which can be computed for all of the hindcasts examined

here without loss of fidelity.

In both shorter-term weather prediction and longer-

term climate prediction there has been an increasing

utilization of ensembles of multiple deterministic model

integrations to obtain better forecasts. One immediate

advantage of ensembles is that they provide information

(via spread) about forecast uncertainty that a single

deterministic forecast cannot. Moreover, using the en-

semble mean as a forecast itself has been shown in many

cases to consistently beat the forecasts of the individual

ensemble members (e.g., Toth and Kalnay 1997; Grimit

and Mass 2002), including for the RMM index (Xiang

et al. 2015).

Ensemble forecasting initially focused on using the

same dynamic core with the same subgrid-scale param-

eterizations, but with each member having slightly per-

turbed initial conditions (e.g., Toth and Kalnay 1993;

Tracton and Kalnay 1993). The idea behind perturbing

initial conditions only was to account for uncertainty

(and error) in the true initial state of the dynamical

system.More recently, there has been a significant effort

to construct ensembles that are not just varied in their

initial conditions, but also in their physics schemes

[hereafter multiphysics ensembles (MPEs)]1 and even

dynamic cores [hereafter multimodel ensembles

(MMEs)]. MPEs and MMEs account for forward model

error and have been shown to improve over single-model,

1 There are two, not necessarily exclusive, approaches to varying

model physics within an ensemble. One approach is for different

members to have different set(s) of subgrid-scale physical param-

eterization schemes. The second approach is to use ‘‘stochastic

physics’’ whereby a stochastic term—different for each ensemble

member—is added to the model tendency terms. See Berner et al.

(2011) and Bouttier et al. (2012) (and references therein) for de-

tailed discussions of various stochastic physics methods. No sto-

chastic physics are used in this study.
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single-physics ensembles (SMSPEs) (e.g., Evans et al.

2000; Candille 2009).

To the best of the authors’ knowledge, only two

published studies have demonstrated the benefit of

MMEs for MJO forecasting. Fu et al. (2013) examined

;31 cases2 of forecasts made weekly during November

2011–March 2012 from the 16-member ensemble of the

real-time operational Climate Forecast System, version

2 (CFSv2), and a 10-member ensemble of their Uni-

versity of Hawaii coupled model (UH). For this very

small sample size, they found skillful forecasts of RMM3

for the ensemble means of CFSv2 and UH out to 25 and

28 days, respectively. When they gave equal weights to

the 16-member CFSv2 ensemble mean and to the

10-member UH ensemble mean, skill increased to 36 days.

Zhang et al. (2013) showed that MMEs improved skill of

RMM1 and RMM2 (evaluated separately) over a 21-yr

hindcast period.

Many more studies have examined SMSPE forecast

skill for the MJO. Wang et al. (2014) showed that the

mean of 4-member CFSv2 ensemble hindcasts, per-

formed daily in the period from 1999 to 2010, had RMM

skill out to 20 days; in fact, a subset of their data is used

in this study (section 2). Vitart (2014) showed that

hindcasts made ‘‘on-the-fly’’ with the European Centre

for Medium-Range Weather Forecasts (ECMWF)

5-member ensemble had RMM skill out to ;30 days

covering the period 1995–2001. Similar results were

found in a CFSv2-ECMWF comparison study by Kim

et al. (2014). Hindcasts from the Australian Bureau of

Meteorology coupled model exhibited RMM skill to

21 days (Rashid et al. 2011).

Some studies only focus on a subset of the year cen-

tered on boreal winter, during which the MJO has the

greatest prediction skill (e.g., Rashid et al. 2011). A

coupled climate model developed at the Geophysical

Fluid Dynamics Laboratory had RMM skill extending

to 27 days for 11 years of November–April hindcasts

(Xiang et al. 2015). A comparison of eight different

coupled-model hindcasts over an approximate two-

decade period in the November–March months

(Neena et al. 2014) found considerable variability in

RMM skill (albeit with a different definition of ‘‘skill’’

than mentioned above), with a version of the ECMWF

model slightly different from that in Vitart (2014)

having the best skill (out to 28 days). Finally, Hamill

and Kiladis (2014) showed RMM skill just under

14 days in hindcasts from the atmosphere-only Global

Ensemble Forecast System covering the December–

February 1985–2012 period; the importance of ocean

coupling for successful MJO forecasts has been dem-

onstrated in several studies (e.g., Woolnough et al.

2007; Fu et al. 2013; Seo et al. 2014; Tseng et al. 2015;

see also the review article by DeMott et al. 2015) and

will be visited briefly herein.

This present study is unique in that it evaluates the

performance of RMM/VPM forecasts over a long pe-

riod (1999–2010)—without seasonal restriction—from

two versions of the atmospheric Flow-following Ico-

sahedral Model coupled with the icosahedral-grid

version of the Hybrid Coordinate Ocean Model

(FIM-iHYCOM; Benjamin et al. 2017), the CFSv2

hindcasts, and various novel combinations of MMEs

and/or MPEs. The remainder of the manuscript is

structured as follows. Section 2 describes the coupled

models used, hindcast postprocessing, and the datasets/

methodologies required for evaluation of hindcast

performance. Hindcast results are presented in section

3. A discussion is provided in section 4, followed by

conclusions in section 5.

2. Data and experimental methods

a. Hindcast models

1) FIM-IHYCOM

As described above, FIM-iHYCOM couples the hy-

drostatic atmospheric FIM (Bleck et al. 2015) to an

icosahedral-grid version of HYCOM (cf. Bleck 2002)

on a common horizontal mesh to eliminate interpolation

of air–sea fluxes. All FIM-iHYCOM hindcasts pre-

sented here cover the period from January 1999 to De-

cember 2010 (to match the CFSv2 hindcast period, see

below). The hindcasts were set up such that, at each

week, a 4-member time-lagged ensemble was created by

initializing FIM-iHYCOM at 1200 and 1800 UTC

Tuesday and 0000 and 0600 UTC Wednesday.4 This

gives 2500 individual ensemble runs, or 625 cases of

4-member ensemble (means) for each model. Initial
2 Herein, the term ‘‘cases’’ is used to refer to the number of in-

dependent sets of ensemble integrations. For example, aggregated

verification statistics from an ensemble (of arbitrary member size

M) initialized weekly for N 5 625 weeks would be considered to

have N 5 625 cases.
3 Unless otherwise stated explicitly, the temporal extent of

forecast ‘‘skill’’ refers to the time at which the bivariate correlation

between model-forecasted and observed RMM/VPM index falls

below 0.5 (e.g., Rashid et al. 2011).

4 The Modeling, Analysis, Predictions and Projections Program,

part of the Climate Program Office of NOAA, has organized the

upcoming Subseasonal Experiment (‘‘SubX,’’ NOAA 2016). Ini-

tializing the FIM-iHYCOM hindcasts weekly around each

Wednesday follows the preliminary SubX protocol.
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conditions for FIM-iHYCOM were provided directly

by CFS reanalysis (CFSR; Saha et al. 2010). No direct

data assimilation using FIM was attempted. FIM has 64

vertical layers; iHYCOM has 32 vertical layers, 2 of

which are in the upper 5m to better capture the diurnal

oscillation in sea surface temperature. The hindcasts

were run at a horizontal grid spacing of ;60 km, with

corresponding time steps of 90 s for the dynamic core

and 180 s for physics and coupling. Table 1 summarizes

all of the hindcast experiments used in this study.

To test the sensitivity to parameterization of deep

convection, two parallel FIM-iHYCOMhindcasts were

run: one using a revised version of the Grell–Freitas

(GF) scheme [Grell and Freitas (2014); hindcast set

hereafter as FIM-CGF], and another with a version of

the simplified Arakawa–Schubert (SAS; Han and Pan

2011) scheme employed in the Global Forecast System

(GFS) physics suite [hindcast set hereafter as FIM-

SAS; see also section 4 of Bleck et al. (2015)]. Other-

wise, FIM-CGF and FIM-SAS are identical (including

the fact that both parameterize shallow convection

with a version of SAS).

As mentioned above, several studies have shown

that theMJO is much better represented/forecasted in

fully coupled atmosphere–ocean models than

in atmosphere-only models forced by ‘‘offline’’ sea

surface temperatures. To test this, the FIM-CGF

configuration described above was run over the

hindcast period but with iHYCOM turned off. This

atmosphere-only run—FIM-AGF—was forced by

observed monthly sea surface temperatures (from the

Hadley Centre) linearly interpolated to daily values.

In section 3, it will be shown that FIM-AGF performs

much worse than any of the coupled-model hindcasts;

thus, FIM-AGF will not be considered in any detailed

analysis.

Output variables archived on the native icosahedral

grid were transformed to a 2.58 3 2.58 horizontal grid
(approximately 5 times the effective grid spacing of the

native grid near the equator). For three-dimensional

variables, there was also a transformation from the na-

tive adaptive vertical coordinate to isobaric levels. Each

ensemble member was integrated forward at least

32.5 days (780h)—thus, the 1200UTCTuesday (earliest)

member ends exactly 32.0 days (768h) after 0000 UTC

Wednesday.

2) CFSV2

Hindcasts from CFSv2 (Saha et al. 2014) were also

examined. CFSv2, like FIM-iHYCOM, couples the at-

mosphere with the ocean. The hydrostatic atmospheric

model in CFSv2 is run at T126 (;100-km resolution) with

64 hybrid vertical layers and uses a SAS-based deep

convection parameterization (but a slightly different

version than that used by FIM-SAS). The ocean is sim-

ulated using version 4 of theModular OceanModel, on a

different horizontal grid finer than the atmospheric

component of CFSv2. This is unlike FIM-iHYCOM,

which is unique in that the horizontal grids for the at-

mosphere and ocean are perfectly matched. CFSR ana-

lyses (Saha et al. 2010) were used for all fields at the

initial time.

TABLE 1. Configurations of each of the four hindcasts examined in this study. For a homogeneous comparison (see text), all four

hindcasts used runs initialized every Tuesday at 1200 and 1800 UTC and every Wednesday at 0000 and 0600 UTC (to create a four-

member time-lagged ensemble once per week) over the common 12-yr period 1999–2010. Moreover, only output data within 768 h (32.0

days) after the initial 0000 UTCWednesday were considered. Note that FIM-AGF does not include an ocean model: monthly sea surface

temperatures from the Hadley Centre were linearly interpolated to every day to provide a boundary condition to the atmosphere. Here,

the symbols s, u, r, and p denote sigma/terrain, isentropic, isopycnic, and pressure, respectively.

FIM-AGF FIM-CGF FIM-SAS CFSv2

Atmospheric

model

Dynamic core FIM FIM FIM GFS

Horizontal grid

(resolution,

structure)

;60-km G7,

icosahedral

;60-km G7,

icosahedral

;60-km G7,

icosahedral

;100 km, T126

spectral

Vertical grid (No. of

layers, structure)

64 layers,

hybrid s–u

64 layers,

hybrid s–u

64 layers,

hybrid s–u

64 layers,

hybrid s–p

Deep convective

scheme

Revised GF Revised GF SAS (2015 GFS) SAS (Saha et al.

2010)

All other physics 2015 GFS 2015 GFS 2015 GFS Saha et al. (2014)

Ocean model Dynamic core None iHYCOM iHYCOM MOM4

Horizontal grid

(resolution,

structure)

— ;60-km G7,

icosahedral

;60-km G7,

icosahedral

Variable (Saha

et al. 2010,

1031–1032)

Vertical grid (No. of

layers, structure)

— 32 layers,

hybrid s–r

32 layers,

hybrid s–r

40 layers, stretched

height
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Of all the CFSv2 hindcasts from January 1999 to

December 2010 (initialized four times daily), only a

subset (1/7) were downloaded to match the initialization

times (four weekly) of FIM-iHYCOM described above.

Moreover, although CFSv2 integrates out to at least

45 days, only the first 780h of hindcasts were down-

loaded tomatch FIM-iHYCOM.BothCFSR andCFSv2

data were downloaded from the National Centers for

Environmental Information (https://www.ncdc.noaa.gov/

data-access/model-data/model-datasets/climate-forecast-

system-version2-cfsv2) on the native grid and then con-

verted to a 2.58 3 2.58 grid.

b. Postprocessing and MJO metrics

This study uses slightly modified versions of both the

RMM and VPM indices. Recall that the RMM index

requires inputs of anomalous U850, U200, and OLR.

VPM is similar to RMM except anomalous VP200 is

used instead of OLR. Both indices require daily anom-

aly fields on a 2.58 3 2.58 horizontal grid in the tropical

band from 158S–158N (Wheeler and Hendon 2004;

Ventrice et al. 2013).

Both RMM and VPM require the removal of a cli-

matology to obtain anomaly fields. Ideally, this clima-

tology would come from the model itself [i.e., a ‘‘model

climatology,’’ Gottschalck et al. (2010)]. However, only

CFSv2 has an available model climatology; there is no

such climatology for FIM-iHYCOM because the simu-

lations were only initialized on a weekly basis and thus

the sample size for a given calendar day is too small.

Therefore, the approach of Gottschalck et al. (2010) was

followed: removing the climatology based on the years

1979–2001 of the National Centers for Environmental

Prediction–National Center for Atmospheric Research

reanalysis (Kalnay et al. 1996). Using this reanalysis

(which is relatively independent of both CFSv2 and

FIM-iHYCOM) to remove climatology facilitates a

fairer comparison between the two models than if CFSR

had been used. Daily satellite-derived analyses from

NOAA were used for OLR (Liebmann and Smith 1996).

The sensitivity to climatology source (model hindcast ver-

sus reanalysis) was tested inCFSv2 (not shown): the former

yielded small but noticeable improvements in RMM/VPM

skill/error at lead times beyond ;12 days. However, it

is possible that the FIM-iHYCOM simulations—which

have not been tuned for subseasonal and longer-range

forecasts—could see more substantial improvements in

RMM/VPM forecasts if anomalies were calculated

from (currently nonexistent) model climatologies

rather than from reanalyses.

Another modification to the RMM/VPM calculations

that is implemented here regards the removal of the

preceding 120-day mean (which is done to remove

interannual variability). Because the FIM-iHYCOM

hindcasts were only initialized on a weekly basis, there

are no FIM-iHYCOM analyses for 6 out of 7 days (i.e.,

as much as 85% of the data needed to calculate 120-day

means are missing). Therefore, the interannual compo-

nent was retained for FIM-iHYCOM, CFSv2, and the

reanalysis fields—again facilitating a fair comparison. It

should be noted that Neena et al. (2014; p. 4534) state

they ‘‘have verified that removing or retaining the in-

terannual variability in the anomalies does not qualita-

tively affect the predictability estimates’’ in their study.

The reanalysis fields used for verification (1999–2010)

are obtained from the same data sources used to calcu-

late and remove climatology.

3. Results

Most of the results presented below consist of verifi-

cation of MJO index (RMM or VPM) against observa-

tions in terms of bivariate correlation, root-mean-square

error (RMSE), ensemble spread, and climatologies of

MJO index amplitude and phase (approximate geo-

graphic location). Because these indices are constructed

from combinations of multiple fields, the time evolu-

tions of the spatial RMSEs for the three variables that

contribute at least 40% to the leading pair of EOFs—

U850 and U200 for RMM; VP200 for VPM (Ventrice

et al. 2013)—are also shown.

a. Skill, error, and spread

1) SINGLE-MODEL ENSEMBLE MEANS AND

SPREAD

A common benchmark to evaluate MJO forecast skill

is the lead time at which the bivariate correlation co-

efficient [Eq. (1) of Lin et al. (2008)] of the RMM (or

VPM) index falls below 0.5. Bivariate RMSE [Eq. (2) of

Lin et al. (2008)]—a measure of forecast error—will be
ffiffiffi

2
p

for a climatological forecast of RMM/VPM index

(first two principal components both zero); this value

serves as another benchmark for evaluating model

performance in forecasting RMM/VPM.

Figure 1 shows bivariate correlations and RMSEs for

the SMSPE means of FIM-CGF, FIM-AGF, FIM-SAS,

and CFSv2 for both RMM and VPM; ensemble spreads

[calculated using the right-hand side of Eq. (15) in Fortin

et al. (2014)] are also shown in Figs. 1c and 1d. The

correlations are lower and RMSEs are higher (viz.,

worse) for the individual ensemble members aggregated

by initialization time (i.e., all 0600 UTC Wednesday

members) than for the four-member ensemble means;

this is a common result (e.g., Xiang et al. 2015) and thus

not shown here.
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There are some interesting differences betweenRMM

and VPM. For example, although all SMSPEs have

more skill (via correlation) in RMM than VPM (Figs. 1a

vs 1b), there is also more error in RMM than VPM

(Figs. 1c vs 1d). This result by itself is important, because

one cannot make unqualified claims about MJO pre-

dictive skill or predictability; specifically, stating that

‘‘model X has skillful prediction of (the RMM index)

out to Y days’’ is preferred over stating that ‘‘model X

has skillfulMJO prediction out to Y days.’’ Accordingly,

Fig. 2 shows the temporal extent to which forecasts of

(modified) RMM and VPM from each of the four

SMSPEmeans are skillful (correlation threshold of 0.5),

and have errors less than those expected by climatology.

Overall, FIM-CGF and CFSv2 are comparable in their

ability to simulate RMM and VPM (although FIM-CGF

has noticeably higher RMM correlations than CFSv2

after;10 days), while FIM-SAS is worse—especially in

terms of RMSE. Unsurprisingly, FIM-AGF has sub-

stantially lower skill and higher RMSE than any of the

coupled models; thus, FIM-AGF will not be considered

in any further analysis. Finally, all SMSPEs are under-

dispersive: the spreads are lower than the RMSEs.

2) MULTIMODEL, MULTIPHYSICS ENSEMBLE

MEANS AND SPREAD

One unique aspect of this study is the evaluation of

MPE and MME hindcasts of MJO indices over a large

dataset spanning 12 years. Bivariate correlations,

RMSEs, and ensemble spreads of these MPE/MME

hindcasts are shown in Fig. 3. Specifically, there are five

ensemble means: ‘‘CFSv21 FIM-CGF’’ and ‘‘CFSv21
FIM-SAS’’ are eight-member MMEs; ‘‘FIM-CGF 1
FIM-SAS’’ is an eight-member MPE. ‘‘All 3 equal’’ and

FIG. 1. Performance of four-member single-model ensemble hindcasts as functions of forecast lead time.

(a) Bivariate correlation for the RMM index from each model’s ensemble mean. (b) As in (a), but for the VPM

index. (c),(d) As in (a),(b), but for ensemble mean RMSE (solid) and ensemble spread (dashed). As shown in the

legend in (a), the red, magenta, black, and blue curves in all panels represent the FIM-CGF, FIM-AGF, FIM-SAS,

and CFSv2 hindcasts, respectively. In (a),(b), bivariate correlations above the gray line at 0.5 are considered to be

skillful; similarly, in (c),(d), RMSE below the gray line at
ffiffiffi

2
p

indicates model performance better than a climato-

logical forecast.
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‘‘All 3 unequal’’ are both 12-member MMEs of FIM-

CGF, FIM-SAS, and CFSv2; the difference is in the

weighting given to each individual model: All 3 equal

assigns a weight of 1/3 to each SMSPE mean, whereas

All 3 unequal assigns weights of 0.4 to the ensemble

means of FIM-CGF and CFSv2 but a weight of 0.2 to

the ensemble mean of FIM-SAS. The addition of a

12-member ensemble with unequal weights is motivated

by the finding that FIM-SAS performs worse than either

FIM-CGF or CFSv2, and thus including FIM-SAS in an

MME may degrade performance.5 Indeed, that is ex-

actly the case: while difficult to see graphically, the

8-member CFSv2 1 FIM-CGF has higher correlations

and lower RMSEs than either 12-member ensemble (for

both RMM and VPM); see also Fig. 2. The negative

impact of adding FIM-SAS to the 8-member CFSv2 1
FIM-CGF is further illustrated by comparing the two

12-member ensembles: All 3 equal performs worse than

All 3 unequal, which performsworse than CFSv21 FIM-

CGF (which can be thought of as a 12-member ensemble

but with zero weight applied to the four FIM-SAS

members).

Nevertheless, MPEs and MMEs can add skill and

reduce error over their SMSPE counterparts, as evi-

denced by comparing Fig. 3 with Fig. 1, and looking at

Fig. 2. Also, while still underdispersive, the MPEs/

MMEs have a better spread/RMSE relationship (closer

to unity) than the SMSPEs (cf. Figs. 3c,d and 1c,d). One

caveat, though, is that ensemble size has not yet been

accounted for—an issue that will now be addressed.

Figure 4 focuses only on the eight-member CFSv2 1
FIM-CGF MME; Figs. 5 and 6 are similar but for

CFSv2 1 FIM-SAS and FIM-CGF 1 FIM-SAS,

FIG. 2. Summary of MJO performance from the various single-model, multiphysics, and

multimodel ensemble hindcast experiments, as measured by the average lead time in days

before (a) the bivariate correlation becomes less than 0.5 and (b) RMSE becomes greater

than
ffiffiffi

2
p

for both the RMM (blue) and VPM (orange) indices.

5 The specific weights were chosen somewhat arbitrarily, but

with two objectives in mind: first, equally weight the two similar

‘‘good’’ models (FIM-CGF and CFSv2); second, the ‘‘poor’’ model

(FIM-SAS) should have less weight than either of the good

models alone.
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respectively. In all three figures, the green lines repre-

sent the eight-member ensemble mean (or spread), and

are identical to the correspondingly-labeled eight-

member ensembles in Fig. 3. Moreover, the red and blue

lines represent the two component four-member

SMSPEs (means and spreads), corresponding to the

similarly labeled lines in Fig. 1. But what makes Figs. 4–6

unique are the gray lines, which correspond to the 8

choose 4 5 70 possible combinations of MPEs (or

MMEs) with a size of 4 (viz., the same size as the

SMSPEs). Note that two of these 70 combinations are

actually the SMSPEs themselves; the other 68 combi-

nations are truly MPEs (or MMEs).

As already mentioned, the best MME combines

CFSv2 with FIM-CGF. In terms of bivariate correla-

tion, RMSE, and ensemble spread, the benefit of the

eight-member CFSv2 1 FIM-CGF over the two

(component) four-member SMSPEs is clear for both

RMM and VPM (Fig. 4). In fact, the bivariate corre-

lations of this MME are higher than both component

SMSPEs for all lead times. But this benefit cannot be

explained solely by the increase in ensemble size [a

result also found by Evans et al. (2000) and Candille

(2009)]: nearly all of the four-member MMEs have

higher correlations and lower RMSEs than the two

(component) four-member SMSPEs. Moreover, the

four-member multimodel spread is always higher than

the corresponding SMSPE spreads. It is conjectured

that the similar, but perhaps complementary, skills and

errors of CFSv2 and FIM-CGF has a ‘‘synergistic’’

impact on their combined MME, allowing for better

forecasts than the two component SMSPEs.

When the noticeably worse FIM-SAS is combined

with CFSv2 (Fig. 5) into an MME, the synergistic effect

is not as evident. In terms of RMM, the eight-member

MME beats both four-member component SMSPEs

with higher correlation and lower RMSE. But for VPM,

adding FIM-SAS to CFSv2 yields no improvement, and

many of the four-member MMEs perform worse than

CFSv2 alone. Only the spread is reliably increased by

FIG. 3. As in Fig. 1, but for the 8-member multimodel CFSv2 1 FIM-CGF ensemble (blue); 8-member multi-

model CFSv2 1 FIM-SAS ensemble (black); 8-member multi-physics FIM-CGF 1 FIM-SAS ensemble (red);

12-member multimodel, equally weighted CFSv2 1 FIM-CGF 1 FIM-SAS ensemble (green); and 12-member

multimodel, unequally-weighted (see text) CFSv2 1 FIM-CGF 1 FIM-SAS ensemble (orange).

2562 MONTHLY WEATHER REV IEW VOLUME 145



the MMEs, which is no surprise given the large differ-

ences between the two component SMSPEs.

Finally, the multiphysics FIM-CGF 1 FIM-SAS

(Fig. 6) show more clearly the negative influence of

FIM-SAS: for both RMM and VPM, the eight-

member MPE mean has lower skill and higher

RMSE than the four-member FIM-CGF. The reasons

for the MPE being worse than one of the component

SMSPEs alone are not clear, but it is conjectured that

the cause is a combination of (i) FIM-SAS being much

worse than FIM-CGF and (ii) the lack of model

(physics) diversity—here, the dynamic core is identi-

cal and only the deep convection parameterization is

changed—compared with the multimodel CFSv2 1
FIM-SAS.

So far, hindcast performance has only been evaluated

in terms of bivariate correlation, RMSE, and spread for

RMMandVPM. Thesemetrics do not give any sense of

the model climatology (viz., how the simulated

distributions of RMM/VPM amplitude and phase

compare with observations). This issue will be

addressed in section 3b. Based on the above results,

operational centers looking to use ensembles to im-

prove MJO (index) forecasts should consider using an

MME approach in which the individual models per-

form comparably.

b. Observed and model climatologies of amplitude
and phase for RMM and VPM

1) RMM AND VPM AMPLITUDE

By design, both RMM and VPM have a long-term

average amplitude of unity; however, there may be

considerable deviation from that climatological value at

any given time. This is illustrated in Figs. 7a and 7b for

the distributions of observed RMM and VPM ampli-

tude, respectively. The observed distributions are cal-

culated using every day from January 1999 to December

FIG. 4. As in Figs. 1 and 3, but the green curve represents the full eight-member multimodel CFSv2 1 FIM-

CGF ensemble (identical to the blue curves in Fig. 3), the blue curve represents the four-member single-model

FIM-CGF ensemble (identical to the red curves in Fig. 1), and the red curve represents the four-member single-

model CFSv2 ensemble (identical to the blue curves in Fig. 1). Additionally, the gray curves represent the 8

choose 4 5 70 combinations of 4-member, multimodel CFSv2 1 FIM-CGF ensembles.

JULY 2017 GREEN ET AL . 2563



2010, and plotted as a function of ‘‘forecast lead time’’

(by simply using the same values for all 32 days, as evi-

denced by the vertical strips of color) for ease of com-

parison with the models (e.g., Figs. 7c–h, see below).

While both RMM and VPM climatological amplitudes

appear to be centered close to unity, the former has a

heavier tail toward high amplitude whereas the latter

has a heavier tail toward low amplitude.

A perfect model—when averaged over a sufficiently

large number of forecast cases, as could be argued

here—would have a distribution of MJO index ampli-

tude independent of forecast lead time and equal to that

of observations (i.e., the model would faithfully repre-

sent the observed climatology of the index without any

‘‘drift’’ toward an incorrect model climatology).

Therefore, changes in the model climatology (as a

function of forecast lead time) would indicate an im-

perfect model—likely due to errors in the governing

equations and physical parameterizations rather than

errors in the initial conditions, given the long time scales

of these hindcasts.

Looking at Figs. 7c–h, it is clear from an ensemble-

mean perspective that none of the three coupled

SMSPE hindcasts (CFSv2, Figs. 7c,d; FIM-CGF,

Figs. 7e,f; and FIM-SAS, Figs. 7g,h) sustain a consis-

tent model climatology similar to observations. Per-

haps the best model in this regard is CFSv2: except for a

possible weak bias in RMM during the last 2 weeks of

the forecast, the distributions of both MJO indices

appear very similar visually to their observational

counterparts. Both FIM-iHYCOM hindcasts show, to

varying degrees, a significant strengthening trend in

RMM and VPM amplitudes during the first week of

the forecast, followed by a weakening trend in the last

two weeks of the forecast (to the point where FIM-CGF

has an obvious weak bias for both indices). The FIM-

iHYCOMhindcasts—especially FIM-SAS—have broader

amplitude distributions than observations. FIM-SAS

also has a persistent strong bias throughout the fore-

cast. It is conjectured that FIM-iHYCOM’s lack of

cycled data assimilation (initial conditions are from

CFSR), combined with use of different convective

FIG. 5. As in Fig. 4, but for the full eight-member multimodel CFSv2 1 FIM-SAS ensemble (green), the four-

member single-model FIM-SAS ensemble (blue), and the four-member single-model CFSv2 ensemble (red).
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schemes, yields an adjustment period (better associ-

ated with model error than initial condition error) to a

different convective balance in the FIM-iHYCOM

forecasts. Specifically, CFSR analyses are based on a

version of the SAS deep convection scheme not used in

any of the FIM-iHYCOM hindcasts. Thus, the initial

adjustment in FIM-iHYCOM, especially for FIM-

CGF, toward a different convective balance is evident

in the distribution shifts (as a function of time) in

Figs. 7e–h.

As shown earlier, using MMEs has the potential to

yield better RMM and VPM forecasts (as measured by

bivariate correlation and RMSE) than the individual

component models. But how do theMMEs fare in terms

of the climatology of index amplitude? Perhaps not

surprisingly, it turns out that the MPE/MMEs simply

yield patterns that tend to smooth out the features of the

individual component models (i.e., the effects of aver-

aging are obvious) and are thus not shown here. So,

while MMEs can be beneficial for improving RMM/

VPM forecast skill (Figs. 3 and 4), they should not be

expected to yield a model climatology better than the

individual component models.

2) RMM AND VPM PHASE

A phase (angle) that describes the instantaneous

‘‘position’’ or ‘‘location’’ of the MJO signal can be de-

rived from the first two principal components of an index

like RMM or VPM. Because of the nature of the EOFs,

these phases are not equal in geographic extent: for

example, RMM phases 8 and 1 (1/4 of RMM phases)

cover over half the globe (the entire Western Hemi-

sphere, plus Africa), whereas RMM phases 4 and 5—

also 1/4 of RMM phases—cover the Maritime Continent

(which spans only a small fraction of longitudes).

Moreover, Ventrice et al. (2013; p. 4204) argue that the

geographic locations of the VPM phases ‘‘should nearly

match those for the RMM’’ phases; this greatly sim-

plifies the analyses of RMM and VPM phase

distributions.

The observed frequencies of RMM and VPM phases

over the 12-yr period are shown in Figs. 8a and 8b.

FIG. 6. As in Figs. 4 and 5, but for the full eight-member multiphysics FIM-CGF1 FIM-SAS ensemble (green),

the four-member single model FIM-CGF ensemble (blue), and the four-member single-model FIM-SAS ensemble

(red).
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FIG. 7. Frequency plots ofMJOmagnitude (abscissa) as measured by the (left) RMM index

and (right) VPM index, as functions of forecast lead time on the ordinate. (a),(b) Observed

frequencies; as described in the text, the observed distributions are independent of (lead)

time. (c),(d) Frequency plots for the 4-member CFSv2 ensemble mean (aggregated over 625

cases) as a function of forecast lead time. (e),(f) As in (c),(d), but for the four-member FIM-

CGF ensemblemean. (g),(h)As in (e),(f) but for the four-member FIM-SAS ensemblemean.

The pink dashed lines denote RMM/VPM magnitudes of 1, 2, and 3.
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FIG. 8. As in Fig. 7, but for frequency distribution of theMJO phase. As described in

the text, all cases where (left) RMM and (right) VPM magnitude falls below

a threshold of 0.75 are placed into a ‘‘phase 0.’’ Although the temporal evolution of the

frequency of phase 0 cases is not shown in this figure, phase 0 cases are included in the

calculation of relative frequency. Thus, while phases 1–8 do not graphically sum to 1

(for a given lead time, i.e., horizontal row), the relative frequencies of phases 1–8 are

still evident.
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Clearly, the preferred phases are 2–4 for RMM and 3–5

for VPM (i.e., over the Indian Ocean and Maritime

Continent). While both RMM and VPM traditionally

only have eight phases (as defined by an octant in 2D

Cartesian space), small changes in either principal

component (i.e., RMM1 or RMM2) can yield major

changes in the calculated phase when the amplitude is

near zero. To avoid this problem, one can bin (into a

‘‘phase 0’’) cases in which the index amplitude falls

below a certain threshold. Often, this threshold is unity

(e.g., Ventrice et al. 2013); here, however, the threshold

is set to 0.75 to capture more marginally strong MJO

cases in the weak-biased FIM-CGF (Figs. 7e,f). As ex-

pected by using the lower threshold, fewer than 50% of

observational cases fall into phase 0: approximately

15%–20% for RMM and ;25% for VPM (not shown).

The observational frequencies here are similar to those

shown in the top panel of Fig. 6 of Ventrice et al. (2013):

in their study, phase 5 is most favored for both RMM

and VPM.6

Similar to the distributions of MJO index amplitude

as a function of forecast lead time, the model hindcasts

have phase distributions that are in poor agreement with

observations (cf. Figs. 8a,b and 8c–h). All models have

varying degrees of phase shift with forecast lead time.

CFSv2 has a preference for phases 6 and 7 (for both

indices) during weeks 3–4. FIM-CGF looks better than

CFSv2 in terms of phase distribution, with a sustained

preference for phases 3–4 for RMM (phase 4 for VPM),

although in FIM-CGF both indices do show a secondary

peak toward the end of the forecast (phase 6 for RMM,

phases 7–8 for VPM). And as with the amplitude dis-

tribution, the phase distribution is worst for FIM-SAS:

the preferred phases of RMMandVPM settle at 5–6 and

6–7, respectively, beyond week 2. Clearly, none of these

models can sustain a climatology that agrees with ob-

servations, instead adjusting to their own, different, in-

ternal climatology. Finally, like with amplitude, the

phase distributions for the MPE/MMEs just smooth out

the features of the individual SMSPEs and do not yield

patterns closer to observations (not shown).

c. RMSEs for hindcasts of U850, U200, and VP200

Understanding that RMM and VPM are constructed

from a combination of multiple fields, it is worthwhile to

place the index results shown above in the context of the

raw fields. A thorough analysis of how the hindcasts

simulate the raw fields (i.e., stratified by index phase/

amplitude, seasonal cycle, etc.) is beyond the scope of

this paper. Instead, maps of RMSE in the tropical band

(158S–158N) aggregated over all 625 cases as a function

of forecast lead time are shown for all three coupled

SMSPEmean hindcasts, for the variables contributing at

least 40% to the leading EOF pair of either RMM or

VPM (Ventrice et al. 2013): U850, U200, and VP200

(Figs. 9, 10, and 11, respectively). FIM-SAS exhibits the

highest RMSEs (especially in U200 and VP200)—not

just in the areas of active MJO convection, but

throughout the tropics—which is consistent with the

poor performance of this SMSPE in MJO index fore-

casts and underscores the importance of realistically

simulating the entire tropical band in order to get better

forecasts of RMM/VPM. In contrast, FIM-CGF has the

lowest RMSEs in each of the three fields, especially in

weeks 3 and 4; CFSv2 generally falls in between the two

FIM-iHYCOM hindcasts.

Figure 9 shows that all three coupled-model hindcasts

have the largest U850 RMSEs over the Indian Ocean

and far western Pacific, with a surprising local RMSE

minimum over the Maritime Continent. CFSv2 actually

has U850 RMSEs that are as large as those in FIM-SAS

and substantially higher than FIM-CGF. This could

explain why FIM-CGF has noticeably higher bivariate

correlations (after ;10 days) than CFSv2 for RMM

(Fig. 1a) but not VPM (Fig. 1b): U850 contributes over

40% to RMM but only ;25% to VPM. Thus, larger

U850 errors would impact RMM more than VPM. For

U200, which has similar fractional contributions to both

RMM and VPM as U850, the lowest RMSEs are again

in FIM-CGF (Fig. 10), although CFSv2 is closer to

FIM-CGF than to FIM-SAS in terms of geographic

distribution but roughly halfway between the two FIM-

iHYCOM hindcasts in terms of overall error magni-

tude. The highest U200 RMSEs in all three models are

not over the areas of activeMJO convection, but rather

over the oceans in the Western Hemisphere. The

VP200 RMSEs (Fig. 11) show similar geographic distri-

butions for CFSv2 and FIM-CGF, with the latter SMSPE

having somewhat smaller magnitudes. FIM-SAS has

substantially higher VP200 RMSEs throughout the

tropics, with the highest errors over equatorial Africa.

4. Discussion

This study, which evaluates the performance of two

global models (and combinations thereof) in terms of

their ability to forecast and represent MJO indices, raises

some important issues that should be considered in future

research regarding MJO simulation in global models.

6 Differences in the methodologies used here and by Ventrice

et al. (2013) are responsible for the slight discrepancies in preferred

MJO phases; namely, time range and frequency of observational

data, different thresholds for strong versus weak MJOs, and the

impact of retaining/removing the preceding 120-day mean.
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The first issue is that of fully coupling the atmospheric

model to an ocean model. The importance of air–sea

interaction and ocean coupling on the MJO has already

been documented extensively (e.g., Woolnough et al.

2007; Fu et al. 2013; Seo et al. 2014; Tseng et al. 2015).

Such a result was replicated here (Figs. 1 and 2): spe-

cifically, turning off ocean coupling resulted in a loss of

8 days of forecast skill for the RMM index (6 days for

VPM), and RMSE exceeding what would be expected

from climatology 5 days earlier for RMM (7 days earlier

for VPM). Moreover, noticeable differences between

the coupled and uncoupled runs begin to appear at lead

times of ;3–5 days, which is clearly within the realm of

numerical weather prediction models. Thus, medium-

range forecasts made from atmosphere-only models

(such as the GFS, which runs out to 16 days) will have

much more difficulty forecasting the MJO (index) and

any associated extratropical interactions—as evidenced

by the ;14-day RMM skill in a version of the GFS en-

semble [Fig. 13a of Hamill and Kiladis (2014)]. This

would suggest that global atmospheric weather models

should be coupled with an ocean model from the start,

if forecasting to extended (intraseasonal) lead times is

an eventual goal. It should be noted that coupling

iHYCOM to FIM only increases computational ex-

pense by ;20%.

The second issue raised by this study is that different

methods to quantitatively identify the MJO—here,

modified versions of the RMM and VPM indices—can

have substantially different skill and error scores within

the same model. This is most evident in Figs. 1–6, where

models (including MMEs) generally have higher skill—

but also higher RMSE—for RMM than for VPM.

Therefore, care was taken in this study—and should be

taken in future studies—to avoid stating the ability of a

model to predict the MJO (rather than a specific MJO

metric/index like RMM or VPM) with skill out to so

many days. Also, while some studies (Lin et al. 2008;

Rashid et al. 2011; Wang et al. 2014) have found that

bivariate correlation drops to 0.5 at around the same

lead time as RMSEbecomes
ffiffiffi

2
p

, Xiang et al. (2015, their

Fig. 2) show that it takes ;4–6 days longer for correla-

tion to reach 0.5 than for RMSE to exceed
ffiffiffi

2
p

; this

discrepancy is also evident in our results for RMM

(Fig. 2).

Purely from the perspective of bivariate correlations

of RMM/VPM, determining if one model has statisti-

cally significantly higher skill than another model is not

straightforward. The bivariate correlation formula

given by Eq. (1) of Lin et al. (2008) is a special case of

the anomaly correlation coefficient (ACC) [e.g., Eq. (1) of

Jones et al. (2004, 2015)] inwhich only two points (RMM1,

RMM2) are considered rather than the thousands of

FIG. 9. RMSEs (verified against reanalysis) of U850 (m s21)

aggregated over all 625 cases for each of the three coupled SMSPE

means [(top) CFSv2, (middle) FIM-CGF, (bottom) FIM-SAS] as

a function of forecast lead time (days 1, 8, 15, 22, and 29 from top to

bottom for each SMSPE), evaluated at each grid point in the

tropical band from 158S to 158N. Also shown in each panel is the

RMSE averaged over all grid points in the tropical band.
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grid points typically used to calculate ACC over a large

area. Equations (2) and (3) of Jones et al. (2004, 2015)

outline a strategy to determine whether two ACCs

have a statistically significant difference. In their

Eq. (3), the variance (for each forecast lead time) of the

Fisher-transformed ACC [their Eq. (2)] falls in the de-

nominator of their test statistic Z. Thus, increased vari-

ance—but all else equal (mean and sample size)—

decreases Z and the likelihood that the two correlations

will have statistically significant differences. As expected,

FIG. 11. As in Fig. 10, but for VP200 (m2 s21).FIG. 10. As in Fig. 9, but for U200 (m s21).
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only having two points in an ACC yields extremely

large variance, even for short lead times (not shown).

Figure 12 shows Z for the differences in bivariate

RMM correlation between select hindcast ensemble

means. The first model has statistically significantly

higher bivariate RMM correlation at 90% and 95%

confidence when Z exceeds 1.64 and 1.96, respectively.

Unsurprisingly, FIM-CGF has statistically significantly

higher skill than the uncoupled FIM-AGF after

;6 days (magenta curve in Fig. 12). Otherwise, there

are only statistically significant differences in the first

week, with CFSv2 beating FIM-SAS and FIM-CGF.

These differences—and the CFSv2 1 FIM-CGF MME

improving upon the FIM-CGF SMSPE at the 90%

level—are likely related to the adjustment period of the

FIM simulations, which do not have their own cycling

data assimilation. There are never statistically signifi-

cant differences in VPM correlation amongst the cou-

pled models (not shown).

It is also interesting to note that while FIM-CGF

[which uses a variant of the Grell and Freitas (2014)

deep convection scheme] performs similarly in terms of

RMM/VPM to CFSv2 (which uses the SAS deep con-

vection scheme), FIM-SAS (which uses a slightly dif-

ferent variant of SAS than CFSv2) performs worse than

the other two models. Furthermore, RMSEs of the raw

fields that go into RMM/VPM calculations (Figs. 9–11)

reveal that FIM-CGF has smaller errors than both

FIM-SAS and CFSv2. Therefore, in this study, GF is

better suited than SAS deep convection for MJO rep-

resentation and forecasting (using the RMM and VPM

indices), although obviously similar tests are needed

within other global models.

Finally, using MPEs or MMEs has the potential to

improve skill and reduce error in RMM/VPM forecasts

compared to every one of the individual component

models. Here, an MME that combined CFSv2 with FIM-

CGFgave higher bivariate correlations (more skill), lower

RMSEs, andmore spread than eitherCFSv2 or FIM-CGF

alone—even when accounting for ensemble size (Fig. 4).

This ‘‘synergistic’’ impact of an MME has been demon-

strated for the RMM index (Fu et al. 2013; Zhang et al.

2013) and in studies of other fields/phenomena (e.g.,

Evans et al. 2000; Candille 2009). However, it was also

shown here that adding FIM-SAS to CFSv2, FIM-

CGF, or the CFSv2 1 FIM-CGF MME yielded min-

imal to no improvement, or even degraded forecast

performance. The most likely explanation is that the

noticeably worse FIM-SAS SMSPE forecasts (cf. SMSPE

forecasts from both FIM-CGF and CFSv2) simply

FIG. 12. Test statisticZ as a function of forecast lead time following Eqs. (2) and (3) of Jones

et al. (2004, 2015) for differences in bivariate RMM correlation between different SMSPEs and

theCFSv21FIM-CGFMME. For each curve labeled in the legend, a positiveZmeans that the

first model labeled has a higher correlation than the secondmodel labeled; the red dashed lines

of Z 5 1.64 and Z 5 1.96 correspond to significance levels of 90% and 95%, respectively.
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acted as a hindrance when combined with FIM-CGF

and/or CFSv2. A second possibility that cannot be

eliminated is that FIM-SAS, when combined with

CFSv2 (atmospheric physics parameterizations very

similar; different dynamical cores for both the atmo-

sphere and ocean) or FIM-CGF (same dynamical core

and physics parameterizations except for deep convec-

tion) does not provide enough ensemble diversity. This

is particularly the case for the FIM-CGF 1 FIM-SAS

MPE, in which the eight-member mean always under-

performs the four-member FIM-CGF mean. Most of

the issues raised in this discussion require further

investigation.

5. Conclusions

This study is the first to evaluate extensively—over a

common 12-yr period with over 600 forecast cases—

ensembles of multiple global atmosphere–ocean cou-

pled models in their individual, and combined, ability to

predict and represent common MJO indices. Specifi-

cally, hindcasts from the coupled atmosphere–ocean

FIM-iHYCOM modeling system were compared with

those from CFSv2. In agreement with numerous other

studies, it was found that a fully coupled atmosphere–

ocean modeling system much better represents and

predicts two MJO indices (RMM and VPM) than an

atmosphere-only model; namely, coupling iHYCOM to

FIM extended the skillful prediction of RMM and VPM

by 8 and 6 days, respectively (Fig. 2).

It is interesting to note that RMM has higher

RMSE than VPM, but also higher correlations

(Figs. 1–3). One would expect a priori that VPM

would have higher correlations than RMM, because

VPM only accounts for the large-scale circulation

whereas RMM includes the much-less-predictable

OLR (i.e., convection). Further investigation of this

surprising result is beyond the scope of this paper, but

further underscores that the differences in RMM and

VPM—particularly when it comes to model evalua-

tion—serve as a caution signal that no single index

will best represent the broadband, multiscale nature

of the MJO.

Two versions of FIM-iHYCOM (FIM-CGF and FIM-

SAS) were run to test the impact of deep convective

parameterization. FIM-CGF had lower RMSEs and

higher bivariate correlations—for both RMM and

VPM—than did FIM-SAS; however, FIM-CGF per-

formed comparably with CFSv2 (which used a slightly

different version of SAS) in terms of VPM, and;2 days

better in terms of RMM (Figs. 1 and 2). But in terms of

the raw fields used to calculate RMM and VPM, FIM-

CGF consistently had the lowest RMSEs.

When FIM-CGF and CFSv2 were combined into a

multimodel ensemble (MME), there were improve-

ments over both component models in skill (bivariate

correlation), RMSE, and ensemble spread (Figs. 3

and 4)—even when accounting for the increase in en-

semble size. It is conjectured that the CFSv21 FIM-CGF

MME beats both CFSv2 and FIM-CGF single-model,

single-physics ensembles because the two component

models are of similar skill and have sufficient model di-

versity (different deep convective parameterizations and

different dynamic cores for both atmosphere and ocean).

But when FIM-SAS was added to either FIM-CGF,

CFSv2, or CFSv2 1 FIM-CGF, model performance did

not improve—and in some cases, actually degraded. This

is most likely due to the worse performance of FIM-SAS

by itself, although it is possible that a relative lack of

model diversity provided by FIM-SAS (same dynamic

core as FIM-CGF, and similar convective parameteriza-

tion as CFSv2) could also be contributing (Zhang

et al. 2013).

The distributions of RMM and VPM amplitude and

phase were evaluated as functions of forecast lead time

for the models and compared with the observed clima-

tological distributions. For CFSv2, the amplitude dis-

tributions for both indices were fairly steady with

forecast lead time and close to observations. Both FIM-

iHYCOM runs exhibited changes/adjustments in RMM/

VPM amplitude with forecast lead time (likely because

FIM-iHYCOM was initialized by CFSR, rather than its

own model-consistent analysis), and featured notable

biases. None of the models had a steady distribution of

RMM/VPM phase that matched observations; instead,

there was a preference to phases east of those favored by

climatology with increasing lead time. The distributions

of RMM/VPM amplitude and phase in the MMEs es-

sentially represented smoothing/averaging of the indi-

vidual models, with no obvious improvement toward

observed climatology (not shown).

Future work will leverage the finding that the com-

bined CFSv2 1 FIM-CGF MME provides better fore-

casts of both RMM and VPM than either single model

alone. Results from this study will be combined with

those from a 30-km FIM-CGF hindcast and used as a

benchmark against which future coupled models will be

compared. Specifically, this includes experimental ver-

sions of NOAA’s Next-Generation Global Prediction

System using the Finite Volume on a Cubed Sphere

(FV3; e.g., Putman and Lin 2007) atmospheric dynami-

cal core. A version of FV3 was used in the coupled-

model MJO study of Xiang et al. (2015), but with initial

conditions nudged from the current spectral GFS.

NOAAwill develop a cycling data assimilation system for

FV3 as part of its scheduled operational implementation.
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This will provide FV3-native analyses (initial conditions)

and eliminate the problem of adjusting to a different

convective balance caused by using analyses from another

modeling system [as was the case for FIM-iHYCOM

here, and in Xiang et al. (2015)].
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